salad.utils packageΒΆ
SubmodulesΒΆ
salad.utils.augment moduleΒΆ
-
class
salad.utils.augment.AffineTransformer(*args, **kwargs)ΒΆ Bases:
torch.nn.modules.module.Module-
affine(y, theta)ΒΆ
-
invert_affine(M)ΒΆ Invert matrix for an affine transformation. Supports batch inputs
M : Transformation matrices of shape (β¦ x 6)
Output: Inverse transformation matrices of shape (β¦ x 6)
-
stn(x, theta)ΒΆ
-
-
class
salad.utils.augment.RandomAffines(flip_x=0.5, flip_y=0.5, shear_x=(0, 0.3), shear_y=(0, 0.3), scale=(0.8, 1.4), rotate=(-1.5707963267948966, 3.141592653589793), dx=(-0.2, 0.2), dy=(-0.2, 0.2))ΒΆ Bases:
object-
compose(size)ΒΆ
-
identify(size)ΒΆ
-
matmul(A, B)ΒΆ
-
reflect(size, p=0.5)ΒΆ
-
rotated(size, p=0.5)ΒΆ
-
scaled(size, p=0.5)ΒΆ
-
shear(size, p=0.5)ΒΆ
-
shift(size, p=0.5)ΒΆ
-
salad.utils.base moduleΒΆ
-
salad.utils.base.load_or_create(init_func, path)ΒΆ
-
salad.utils.base.panelize(img)ΒΆ
salad.utils.config moduleΒΆ
Experiment Configurations for salad
This file contains classes to easily configure experiments for different solvers
available in salad.
-
class
salad.utils.config.BaseConfig(description, log='./log')ΒΆ Bases:
argparse.ArgumentParserBasic configuration with arguments for most deep learning experiments
-
print_config()ΒΆ
-
-
class
salad.utils.config.DomainAdaptConfig(description, log='./log')ΒΆ Bases:
salad.utils.config.BaseConfigBase Configuration for Unsupervised Domain Adaptation Experiments