salad.datasets.da packageΒΆ
SubmodulesΒΆ
salad.datasets.da.base moduleΒΆ
-
class
salad.datasets.da.base.AugmentationDataset(dataset, transforms, n_samples=2)ΒΆ Bases:
torch.utils.data.dataset.Dataset
-
class
salad.datasets.da.base.JointDataset(*datasets)ΒΆ Bases:
torch.utils.data.dataset.Dataset
-
class
salad.datasets.da.base.JointLoader(*datasets, collate_fn=None)ΒΆ Bases:
object
-
class
salad.datasets.da.base.MultiDomainLoader(*args, collate='stack')ΒΆ Bases:
salad.datasets.da.base.JointLoaderWrapper around Joint Loader for multi domain training
-
salad.datasets.da.base.concat_collate(batch)ΒΆ
-
salad.datasets.da.base.load_dataset(path, train=True, img_size=32, expand=True)ΒΆ
-
salad.datasets.da.base.load_dataset2(path, train=True, img_size=32, expand=True)ΒΆ
salad.datasets.da.digits moduleΒΆ
Dataset loader for digit experiments
Digit datasets (MNIST, USPS, SVHN, Synth Digits) are standard benchmarks for unsupervised domain adaptation. In addition to access to these datasets, this module provides a collection of other datasets useful for DA based on digit datasets.
Datasets are collections of single datasets and are subclasses of the MultiDomainLoader.
-
class
salad.datasets.da.digits.AugmentationLoader(root, dataset_name, transforms, split='train', augment={}, download=True, collate='cat', **kwargs)ΒΆ
-
class
salad.datasets.da.digits.DigitsLoader(root, keys, split='train', download=True, collate='stack', normalize=False, augment={}, augment_func=<class 'salad.datasets.transforms.ensembling.Augmentation'>, batch_size=1, **kwargs)ΒΆ Bases:
salad.datasets.da.base.MultiDomainLoaderDigits dataset
Four domains available: SVHN, MNIST, SYNTH, USPS
Parameters: - root (str) β Root directory where dataset is available or should be downloaded to
- keys (list of str) β pass
See also
torch.utils.data.DataLoader
-
class
salad.datasets.da.digits.HighToLowGaussianΒΆ Bases:
object-
noisemodels= [0.3, 0.25, 0.2, 0.15, 0.1, 0.075, 0.05, 0.025, 0.001]ΒΆ
-
-
class
salad.datasets.da.digits.HighToLowSaltPepper(*args, **kwargs)ΒΆ Bases:
object-
noisemodels= [<salad.datasets.transforms.noise.SaltAndPepper object>, <salad.datasets.transforms.noise.SaltAndPepper object>, <salad.datasets.transforms.noise.SaltAndPepper object>, <salad.datasets.transforms.noise.SaltAndPepper object>, <salad.datasets.transforms.noise.SaltAndPepper object>, <salad.datasets.transforms.noise.SaltAndPepper object>, <salad.datasets.transforms.noise.SaltAndPepper object>, <salad.datasets.transforms.noise.SaltAndPepper object>, <salad.datasets.transforms.noise.Gaussian object>]ΒΆ
-
-
class
salad.datasets.da.digits.LowToHighGaussianΒΆ Bases:
object-
noisemodels= [0.001, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3]ΒΆ
-
-
class
salad.datasets.da.digits.LowToHighSaltPepperΒΆ Bases:
object-
noisemodels= [<salad.datasets.transforms.noise.Gaussian object>, <salad.datasets.transforms.noise.SaltAndPepper object>, <salad.datasets.transforms.noise.SaltAndPepper object>, <salad.datasets.transforms.noise.SaltAndPepper object>, <salad.datasets.transforms.noise.SaltAndPepper object>, <salad.datasets.transforms.noise.SaltAndPepper object>, <salad.datasets.transforms.noise.SaltAndPepper object>, <salad.datasets.transforms.noise.SaltAndPepper object>, <salad.datasets.transforms.noise.SaltAndPepper object>]ΒΆ
-
-
class
salad.datasets.da.digits.NoiseLoader(root, key, noisemodels=[], normalize=True, **kwargs)ΒΆ Bases:
salad.datasets.da.digits.AugmentationLoader-
eps= 1.0ΒΆ
-
-
class
salad.datasets.da.digits.RotationLoader(root, dataset_name, angles=[0, 15, 30, 45, 60, 75], normalize=False, **kwargs)ΒΆ Bases:
salad.datasets.da.digits.AugmentationLoader-
eps= 1.0ΒΆ
-
salad.datasets.da.toy moduleΒΆ
Toy Datasets for domain adaptation experiments
-
class
salad.datasets.da.toy.ToyDatasetLoader(seed=None, augment=False, n_domains=2, download=True, noisemodels=None, collate='stack', **kwargs)ΒΆ Bases:
salad.datasets.da.base.MultiDomainLoaderDigits dataset
Four domains available: SVHN, MNIST, SYNTH, USPS
-
salad.datasets.da.toy.make_data(n_samples=50000, n_domains=2, plot=False, noisemodels=None, seed=None)ΒΆ
-
salad.datasets.da.toy.noise_augment(x)ΒΆ